Lesson 26. Inference for Logistic Regression

1 Overview

• The simple logistic regression model (in logit form):

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X \qquad \pi = P(Y=1)$$

• Recall the simple linear regression model:

$$Y = \beta_0 + \beta_1 X + \varepsilon \qquad \varepsilon \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$$

• How does inference for simple logistic regression compare to inference for simple linear regression?

	Linear regression	Logistic regression
Test for β_1	<i>t</i> -test	
CI for β_1	$\hat{\beta}_1 \pm t_{\alpha/2, n-2} SE_{\hat{\beta}_1}$	
Test for overall model	ANOVA <i>F</i> -test (change in SSE)	

2 z-test (Wald test) for the slope of a simple logistic regression model

- Question: Is the slope of the explanatory variable different from zero?
- Formal steps:
 - 1. State the hypotheses:

2. Calculate the test statistic:

- 3. Calculate the *p*-value:
 - $\circ~$ If the conditions for logistic regression hold, then the

4. State your conclusion, based on the given significance level α

If we reject H_0 (*p*-value $\leq \alpha$):

We reject H_0 because the *p*-value is less than the significance level α . We see evidence that *X* is significantly associated with *Y*.

If we fail to reject H_0 (*p*-value > α):

We fail to reject H_0 because the *p*-value is greater than the significance level α . We do not see evidence that X is significantly associated with Y.

3 Confidence intervals for the slope of a simple logistic regression model

- The $100(1 \alpha)$ % confidence interval for the slope β_1 is
- The $100(1 \alpha)$ % confidence interval for the odds ratio e^{β_1} is

Example 1. Continuing with the MedGPA data from previous lessons...

We looked at a binary response variable (*Acceptance* = 1 if accepted, 0 if not) and a quantitative predictor (*GPA*) for 55 medical school applicants from a college in the Midwest.

We fit the following logistic regression model:

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 GPA$$
 where $P(Acceptance = 1)$

We get the following summary output from R:

```
Call:
glm(formula = Acceptance ~ GPA, family = binomial, data = MedGPA)
Deviance Residuals:
   Min 1Q Median 3Q
                                     Max
-1.7805 -0.8522 0.4407 0.7819 2.0967
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -19.207 5.629 -3.412 0.000644 ***
GPA
            5.454
                        1.579 3.454 0.000553 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 75.791 on 54 degrees of freedom
Residual deviance: 56.839 on 53 degrees of freedom
AIC: 60.839
Number of Fisher Scoring iterations: 4
```

- a. Is the association between *Acceptance* and *GPA* statistically significant? Use a significance level of 0.05. Report the relevant values from the summary output.
- b. Give a 95% confidence interval on the odds ratio corresponding to a unit increase in *GPA*. What does this confidence interval mean?

4 Likelihood ratio test (LRT) for utility of a simple logistic regression model

- A quick review of maximum likelihood estimation from SM239...
- The **likelihood** of the data, denoted by *L*, is the joint PDF of the data, regarded as a function of the unknown parameters with the data values fixed
- The method of maximum likelihood chooses parameter values to maximize L
 - The method of maximum likelihood is used to fit the logistic regression model
- Equivalently, we can minimize $-2 \log L$, which is called the **deviance**
- We compare nested logistic regression models by observing the change in deviance ("drop in deviance"), much like we observed changes in SSE for nested linear regression models
- Question: is the model useful?
- Formal steps:
 - 1. State the hypotheses:

2. Calculate the test statistic:

- 3. Calculate the *p*-value:
 - If the conditions for logistic regression hold, then the

the test statistic follows

 \circ *p*-value =

	$\xrightarrow{f_{\chi^2(1)}(x)} x$

î

4. State your conclusion, based on the given significance level α

If we reject H_0 (*p*-value $\leq \alpha$):

We see significant evidence that the model is useful.

If we fail to reject H_0 (*p*-value > α):

We do not see significant evidence that the model is useful.

5 Note: different tests for the same hypotheses?

- The *z*-test and the LRT we discussed above are asymptotically equivalent
- With smaller sample sizes, they may give different conclusions
 - If this happens, "trust" LRT
- The LRT is considered better than the *z*-test, but is more difficult computationally
- When we study <u>multiple</u> logistic regression models, we will see that these tests have different hypotheses (and uses)

Example 2. Continuing with the MedGPA data from Example 1...

Is the model useful? Use a significance level of 0.05.